extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xQ16).1C22 = Q16.8D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).1C2^2 | 128,920 |
(C2xQ16).2C22 = D8.4D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).2C2^2 | 128,940 |
(C2xQ16).3C22 = Q16.4D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).3C2^2 | 128,941 |
(C2xQ16).4C22 = D8.5D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).4C2^2 | 128,942 |
(C2xQ16).5C22 = Q16.5D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).5C2^2 | 128,943 |
(C2xQ16).6C22 = C16.19D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).6C2^2 | 128,948 |
(C2xQ16).7C22 = C16:8D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).7C2^2 | 128,949 |
(C2xQ16).8C22 = C16.D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).8C2^2 | 128,951 |
(C2xQ16).9C22 = C16:2D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).9C2^2 | 128,952 |
(C2xQ16).10C22 = C23.50D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).10C2^2 | 128,967 |
(C2xQ16).11C22 = C23.51D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).11C2^2 | 128,968 |
(C2xQ16).12C22 = C23.20D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).12C2^2 | 128,969 |
(C2xQ16).13C22 = C4.SD32 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).13C2^2 | 128,973 |
(C2xQ16).14C22 = C8.22SD16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).14C2^2 | 128,974 |
(C2xQ16).15C22 = C8.12SD16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).15C2^2 | 128,975 |
(C2xQ16).16C22 = C8.14SD16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).16C2^2 | 128,977 |
(C2xQ16).17C22 = C4:Q32 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).17C2^2 | 128,979 |
(C2xQ16).18C22 = C16:5D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).18C2^2 | 128,980 |
(C2xQ16).19C22 = C8.21D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).19C2^2 | 128,981 |
(C2xQ16).20C22 = C16:3D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).20C2^2 | 128,982 |
(C2xQ16).21C22 = C8.7D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).21C2^2 | 128,983 |
(C2xQ16).22C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).22C2^2 | 128,1933 |
(C2xQ16).23C22 = C4.172+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).23C2^2 | 128,1934 |
(C2xQ16).24C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).24C2^2 | 128,1935 |
(C2xQ16).25C22 = C42.267D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).25C2^2 | 128,1941 |
(C2xQ16).26C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).26C2^2 | 128,1942 |
(C2xQ16).27C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).27C2^2 | 128,1944 |
(C2xQ16).28C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).28C2^2 | 128,1957 |
(C2xQ16).29C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).29C2^2 | 128,1980 |
(C2xQ16).30C22 = C42.297D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).30C2^2 | 128,1981 |
(C2xQ16).31C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).31C2^2 | 128,1982 |
(C2xQ16).32C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).32C2^2 | 128,1994 |
(C2xQ16).33C22 = SD16:3D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).33C2^2 | 128,2008 |
(C2xQ16).34C22 = Q16:4D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).34C2^2 | 128,2009 |
(C2xQ16).35C22 = D8:13D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).35C2^2 | 128,2015 |
(C2xQ16).36C22 = D4xQ16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).36C2^2 | 128,2018 |
(C2xQ16).37C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).37C2^2 | 128,2034 |
(C2xQ16).38C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).38C2^2 | 128,2047 |
(C2xQ16).39C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).39C2^2 | 128,2125 |
(C2xQ16).40C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).40C2^2 | 128,2126 |
(C2xQ16).41C22 = Q8:6Q16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).41C2^2 | 128,2127 |
(C2xQ16).42C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).42C2^2 | 128,2135 |
(C2xQ16).43C22 = Q32:C4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 8- | (C2xQ16).43C2^2 | 128,912 |
(C2xQ16).44C22 = Q16.D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 4 | (C2xQ16).44C2^2 | 128,925 |
(C2xQ16).45C22 = D8.12D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | 4- | (C2xQ16).45C2^2 | 128,927 |
(C2xQ16).46C22 = C8.3D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 4 | (C2xQ16).46C2^2 | 128,944 |
(C2xQ16).47C22 = C8.5D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 4- | (C2xQ16).47C2^2 | 128,946 |
(C2xQ16).48C22 = D4.4D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | 4- | (C2xQ16).48C2^2 | 128,954 |
(C2xQ16).49C22 = D4.5D8 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 4 | (C2xQ16).49C2^2 | 128,955 |
(C2xQ16).50C22 = C23.10SD16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 8- | (C2xQ16).50C2^2 | 128,971 |
(C2xQ16).51C22 = C42.212D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).51C2^2 | 128,1769 |
(C2xQ16).52C22 = C42.445D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).52C2^2 | 128,1771 |
(C2xQ16).53C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).53C2^2 | 128,1776 |
(C2xQ16).54C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).54C2^2 | 128,1778 |
(C2xQ16).55C22 = M4(2):17D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).55C2^2 | 128,1795 |
(C2xQ16).56C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).56C2^2 | 128,1843 |
(C2xQ16).57C22 = C42.231D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).57C2^2 | 128,1845 |
(C2xQ16).58C22 = C42.234D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).58C2^2 | 128,1848 |
(C2xQ16).59C22 = C42.235D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).59C2^2 | 128,1849 |
(C2xQ16).60C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).60C2^2 | 128,1852 |
(C2xQ16).61C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).61C2^2 | 128,1853 |
(C2xQ16).62C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).62C2^2 | 128,1857 |
(C2xQ16).63C22 = M4(2):8D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).63C2^2 | 128,1884 |
(C2xQ16).64C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).64C2^2 | 128,1905 |
(C2xQ16).65C22 = C42.389C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).65C2^2 | 128,1909 |
(C2xQ16).66C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).66C2^2 | 128,1913 |
(C2xQ16).67C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).67C2^2 | 128,1915 |
(C2xQ16).68C22 = C42.262D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).68C2^2 | 128,1917 |
(C2xQ16).69C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).69C2^2 | 128,1936 |
(C2xQ16).70C22 = C42.274D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).70C2^2 | 128,1948 |
(C2xQ16).71C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).71C2^2 | 128,1950 |
(C2xQ16).72C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).72C2^2 | 128,1951 |
(C2xQ16).73C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).73C2^2 | 128,1955 |
(C2xQ16).74C22 = C42.300D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).74C2^2 | 128,1984 |
(C2xQ16).75C22 = C42.303D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).75C2^2 | 128,1987 |
(C2xQ16).76C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).76C2^2 | 128,1988 |
(C2xQ16).77C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).77C2^2 | 128,1990 |
(C2xQ16).78C22 = C42.28C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).78C2^2 | 128,1993 |
(C2xQ16).79C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).79C2^2 | 128,1995 |
(C2xQ16).80C22 = SD16:8D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).80C2^2 | 128,2001 |
(C2xQ16).81C22 = Q16:9D4 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).81C2^2 | 128,2002 |
(C2xQ16).82C22 = D8oQ16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 32 | 4- | (C2xQ16).82C2^2 | 128,2025 |
(C2xQ16).83C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).83C2^2 | 128,2044 |
(C2xQ16).84C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).84C2^2 | 128,2045 |
(C2xQ16).85C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).85C2^2 | 128,2048 |
(C2xQ16).86C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).86C2^2 | 128,2049 |
(C2xQ16).87C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).87C2^2 | 128,2063 |
(C2xQ16).88C22 = C42.58C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).88C2^2 | 128,2076 |
(C2xQ16).89C22 = C42.63C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).89C2^2 | 128,2081 |
(C2xQ16).90C22 = C42.510C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).90C2^2 | 128,2101 |
(C2xQ16).91C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).91C2^2 | 128,2103 |
(C2xQ16).92C22 = C42.515C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 128 | | (C2xQ16).92C2^2 | 128,2106 |
(C2xQ16).93C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).93C2^2 | 128,2109 |
(C2xQ16).94C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).94C2^2 | 128,2130 |
(C2xQ16).95C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).95C2^2 | 128,2132 |
(C2xQ16).96C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | | (C2xQ16).96C2^2 | 128,2133 |
(C2xQ16).97C22 = Q8oD16 | φ: C22/C1 → C22 ⊆ Out C2xQ16 | 64 | 4- | (C2xQ16).97C2^2 | 128,2149 |
(C2xQ16).98C22 = C2xC2.Q32 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).98C2^2 | 128,869 |
(C2xQ16).99C22 = C23.24D8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).99C2^2 | 128,870 |
(C2xQ16).100C22 = C23.39D8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).100C2^2 | 128,871 |
(C2xQ16).101C22 = C23.41D8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).101C2^2 | 128,873 |
(C2xQ16).102C22 = C4xSD32 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).102C2^2 | 128,905 |
(C2xQ16).103C22 = C4xQ32 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).103C2^2 | 128,906 |
(C2xQ16).104C22 = SD32:3C4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).104C2^2 | 128,907 |
(C2xQ16).105C22 = Q32:4C4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).105C2^2 | 128,908 |
(C2xQ16).106C22 = Q16:7D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).106C2^2 | 128,917 |
(C2xQ16).107C22 = D8:8D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).107C2^2 | 128,918 |
(C2xQ16).108C22 = D8.10D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).108C2^2 | 128,921 |
(C2xQ16).109C22 = Q16:2D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).109C2^2 | 128,939 |
(C2xQ16).110C22 = Q16:Q8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).110C2^2 | 128,957 |
(C2xQ16).111C22 = C4.Q32 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).111C2^2 | 128,959 |
(C2xQ16).112C22 = Q16.Q8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).112C2^2 | 128,961 |
(C2xQ16).113C22 = Q8.(C2xD4) | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).113C2^2 | 128,1743 |
(C2xQ16).114C22 = (C2xQ8):17D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).114C2^2 | 128,1745 |
(C2xQ16).115C22 = C2xC4:2Q16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).115C2^2 | 128,1765 |
(C2xQ16).116C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).116C2^2 | 128,1767 |
(C2xQ16).117C22 = C8.D4:C2 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).117C2^2 | 128,1791 |
(C2xQ16).118C22 = (C2xC8):14D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).118C2^2 | 128,1793 |
(C2xQ16).119C22 = C42.384D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).119C2^2 | 128,1834 |
(C2xQ16).120C22 = C42.224D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).120C2^2 | 128,1836 |
(C2xQ16).121C22 = C42.451D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).121C2^2 | 128,1839 |
(C2xQ16).122C22 = C42.226D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).122C2^2 | 128,1840 |
(C2xQ16).123C22 = C42.358C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).123C2^2 | 128,1856 |
(C2xQ16).124C22 = C42.361C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).124C2^2 | 128,1859 |
(C2xQ16).125C22 = C2xC4:Q16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).125C2^2 | 128,1877 |
(C2xQ16).126C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).126C2^2 | 128,1879 |
(C2xQ16).127C22 = M4(2).20D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).127C2^2 | 128,1888 |
(C2xQ16).128C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).128C2^2 | 128,1900 |
(C2xQ16).129C22 = C42.367D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).129C2^2 | 128,1902 |
(C2xQ16).130C22 = C42.387C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).130C2^2 | 128,1907 |
(C2xQ16).131C22 = SD16:11D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).131C2^2 | 128,2016 |
(C2xQ16).132C22 = D4:5Q16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).132C2^2 | 128,2031 |
(C2xQ16).133C22 = C42.465C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).133C2^2 | 128,2032 |
(C2xQ16).134C22 = C42.469C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).134C2^2 | 128,2036 |
(C2xQ16).135C22 = C42.476C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).135C2^2 | 128,2059 |
(C2xQ16).136C22 = C42.477C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).136C2^2 | 128,2060 |
(C2xQ16).137C22 = C42.482C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).137C2^2 | 128,2065 |
(C2xQ16).138C22 = C42.485C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).138C2^2 | 128,2068 |
(C2xQ16).139C22 = D4:6Q16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).139C2^2 | 128,2070 |
(C2xQ16).140C22 = C42.491C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).140C2^2 | 128,2074 |
(C2xQ16).141C22 = Q8:5Q16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).141C2^2 | 128,2095 |
(C2xQ16).142C22 = C42.505C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).142C2^2 | 128,2096 |
(C2xQ16).143C22 = C42.506C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).143C2^2 | 128,2097 |
(C2xQ16).144C22 = C42.516C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).144C2^2 | 128,2107 |
(C2xQ16).145C22 = C42.530C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).145C2^2 | 128,2128 |
(C2xQ16).146C22 = C22xQ32 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).146C2^2 | 128,2142 |
(C2xQ16).147C22 = C2xC4oD16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).147C2^2 | 128,2143 |
(C2xQ16).148C22 = C2xC8.17D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).148C2^2 | 128,879 |
(C2xQ16).149C22 = C23.21SD16 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 32 | 4 | (C2xQ16).149C2^2 | 128,880 |
(C2xQ16).150C22 = C2xQ16:C4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).150C2^2 | 128,1673 |
(C2xQ16).151C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).151C2^2 | 128,1675 |
(C2xQ16).152C22 = C4xC8.C22 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).152C2^2 | 128,1677 |
(C2xQ16).153C22 = C42.276C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).153C2^2 | 128,1679 |
(C2xQ16).154C22 = C42.279C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).154C2^2 | 128,1682 |
(C2xQ16).155C22 = C42.281C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).155C2^2 | 128,1684 |
(C2xQ16).156C22 = (C2xC8):13D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).156C2^2 | 128,1792 |
(C2xQ16).157C22 = C42.247D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).157C2^2 | 128,1882 |
(C2xQ16).158C22 = C42.256D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).158C2^2 | 128,1904 |
(C2xQ16).159C22 = C42.390C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).159C2^2 | 128,1910 |
(C2xQ16).160C22 = Q16:10D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).160C2^2 | 128,2003 |
(C2xQ16).161C22 = Q16:5D4 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).161C2^2 | 128,2010 |
(C2xQ16).162C22 = C42.493C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).162C2^2 | 128,2084 |
(C2xQ16).163C22 = C42.497C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).163C2^2 | 128,2088 |
(C2xQ16).164C22 = Q16:4Q8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).164C2^2 | 128,2119 |
(C2xQ16).165C22 = Q16:5Q8 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 128 | | (C2xQ16).165C2^2 | 128,2122 |
(C2xQ16).166C22 = C42.532C23 | φ: C22/C2 → C2 ⊆ Out C2xQ16 | 64 | | (C2xQ16).166C2^2 | 128,2134 |
(C2xQ16).167C22 = C2xC4xQ16 | φ: trivial image | 128 | | (C2xQ16).167C2^2 | 128,1670 |
(C2xQ16).168C22 = C4xC4oD8 | φ: trivial image | 64 | | (C2xQ16).168C2^2 | 128,1671 |
(C2xQ16).169C22 = C42.280C23 | φ: trivial image | 64 | | (C2xQ16).169C2^2 | 128,1683 |
(C2xQ16).170C22 = Q16:12D4 | φ: trivial image | 64 | | (C2xQ16).170C2^2 | 128,2017 |
(C2xQ16).171C22 = Q16:13D4 | φ: trivial image | 64 | | (C2xQ16).171C2^2 | 128,2019 |
(C2xQ16).172C22 = Q8xQ16 | φ: trivial image | 128 | | (C2xQ16).172C2^2 | 128,2114 |
(C2xQ16).173C22 = Q16:6Q8 | φ: trivial image | 128 | | (C2xQ16).173C2^2 | 128,2115 |