extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q16)⋊1C22 = D8.9D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):1C2^2 | 128,919 |
(C2×Q16)⋊2C22 = C23⋊3Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):2C2^2 | 128,1921 |
(C2×Q16)⋊3C22 = C24.123D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):3C2^2 | 128,1922 |
(C2×Q16)⋊4C22 = C24.124D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):4C2^2 | 128,1923 |
(C2×Q16)⋊5C22 = C42.269D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):5C2^2 | 128,1943 |
(C2×Q16)⋊6C22 = C42.410C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):6C2^2 | 128,1956 |
(C2×Q16)⋊7C22 = D8⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):7C2^2 | 128,2005 |
(C2×Q16)⋊8C22 = C42.461C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):8C2^2 | 128,2028 |
(C2×Q16)⋊9C22 = C42.49C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):9C2^2 | 128,2046 |
(C2×Q16)⋊10C22 = D8.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16):10C2^2 | 128,923 |
(C2×Q16)⋊11C22 = D8.3D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):11C2^2 | 128,926 |
(C2×Q16)⋊12C22 = C24.178D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):12C2^2 | 128,1736 |
(C2×Q16)⋊13C22 = C24.104D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):13C2^2 | 128,1737 |
(C2×Q16)⋊14C22 = C24.106D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):14C2^2 | 128,1739 |
(C2×Q16)⋊15C22 = D4.(C2×D4) | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):15C2^2 | 128,1741 |
(C2×Q16)⋊16C22 = C42.446D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):16C2^2 | 128,1772 |
(C2×Q16)⋊17C22 = C42.16C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):17C2^2 | 128,1775 |
(C2×Q16)⋊18C22 = M4(2)⋊15D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):18C2^2 | 128,1788 |
(C2×Q16)⋊19C22 = M4(2).38D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16):19C2^2 | 128,1801 |
(C2×Q16)⋊20C22 = M4(2)⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):20C2^2 | 128,1885 |
(C2×Q16)⋊21C22 = M4(2)⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):21C2^2 | 128,1886 |
(C2×Q16)⋊22C22 = C24.128D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):22C2^2 | 128,1927 |
(C2×Q16)⋊23C22 = C24.129D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):23C2^2 | 128,1928 |
(C2×Q16)⋊24C22 = C24.130D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):24C2^2 | 128,1929 |
(C2×Q16)⋊25C22 = C42.273D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):25C2^2 | 128,1947 |
(C2×Q16)⋊26C22 = C42.408C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):26C2^2 | 128,1954 |
(C2×Q16)⋊27C22 = SD16⋊6D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):27C2^2 | 128,1998 |
(C2×Q16)⋊28C22 = D8⋊10D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):28C2^2 | 128,1999 |
(C2×Q16)⋊29C22 = SD16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):29C2^2 | 128,2007 |
(C2×Q16)⋊30C22 = D8.13D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16):30C2^2 | 128,2021 |
(C2×Q16)⋊31C22 = D8○SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):31C2^2 | 128,2022 |
(C2×Q16)⋊32C22 = C42.46C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):32C2^2 | 128,2043 |
(C2×Q16)⋊33C22 = C42.472C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | | (C2xQ16):33C2^2 | 128,2055 |
(C2×Q16)⋊34C22 = D4○SD32 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):34C2^2 | 128,2148 |
(C2×Q16)⋊35C22 = C4.C25 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16):35C2^2 | 128,2318 |
(C2×Q16)⋊36C22 = C2×C22⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):36C2^2 | 128,1731 |
(C2×Q16)⋊37C22 = C2×D4.7D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):37C2^2 | 128,1733 |
(C2×Q16)⋊38C22 = C24.103D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):38C2^2 | 128,1734 |
(C2×Q16)⋊39C22 = (C2×D4)⋊21D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):39C2^2 | 128,1744 |
(C2×Q16)⋊40C22 = C2×Q8.D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):40C2^2 | 128,1766 |
(C2×Q16)⋊41C22 = C42.18C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):41C2^2 | 128,1777 |
(C2×Q16)⋊42C22 = C2×C8.18D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):42C2^2 | 128,1781 |
(C2×Q16)⋊43C22 = C24.144D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):43C2^2 | 128,1782 |
(C2×Q16)⋊44C22 = C2×C8.12D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):44C2^2 | 128,1878 |
(C2×Q16)⋊45C22 = M4(2)⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):45C2^2 | 128,1887 |
(C2×Q16)⋊46C22 = SD16⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):46C2^2 | 128,2000 |
(C2×Q16)⋊47C22 = D8⋊12D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):47C2^2 | 128,2012 |
(C2×Q16)⋊48C22 = SD16⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):48C2^2 | 128,2014 |
(C2×Q16)⋊49C22 = C22×SD32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):49C2^2 | 128,2141 |
(C2×Q16)⋊50C22 = C2×C16⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):50C2^2 | 128,2144 |
(C2×Q16)⋊51C22 = C2×C8.D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):51C2^2 | 128,1785 |
(C2×Q16)⋊52C22 = C24.110D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):52C2^2 | 128,1786 |
(C2×Q16)⋊53C22 = C2×D4.5D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):53C2^2 | 128,1798 |
(C2×Q16)⋊54C22 = M4(2).10C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):54C2^2 | 128,1799 |
(C2×Q16)⋊55C22 = C2×C8.2D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):55C2^2 | 128,1881 |
(C2×Q16)⋊56C22 = C2×Q32⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):56C2^2 | 128,2145 |
(C2×Q16)⋊57C22 = D16⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):57C2^2 | 128,2146 |
(C2×Q16)⋊58C22 = C22×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):58C2^2 | 128,2311 |
(C2×Q16)⋊59C22 = C2×D8⋊C22 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):59C2^2 | 128,2312 |
(C2×Q16)⋊60C22 = C2×D4○SD16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | | (C2xQ16):60C2^2 | 128,2314 |
(C2×Q16)⋊61C22 = C2×Q8○D8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16):61C2^2 | 128,2315 |
(C2×Q16)⋊62C22 = C8.C24 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16):62C2^2 | 128,2316 |
(C2×Q16)⋊63C22 = C22×C4○D8 | φ: trivial image | 64 | | (C2xQ16):63C2^2 | 128,2309 |
(C2×Q16)⋊64C22 = C2×D4○D8 | φ: trivial image | 32 | | (C2xQ16):64C2^2 | 128,2313 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Q16).1C22 = Q16.8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).1C2^2 | 128,920 |
(C2×Q16).2C22 = D8.4D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).2C2^2 | 128,940 |
(C2×Q16).3C22 = Q16.4D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).3C2^2 | 128,941 |
(C2×Q16).4C22 = D8.5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).4C2^2 | 128,942 |
(C2×Q16).5C22 = Q16.5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).5C2^2 | 128,943 |
(C2×Q16).6C22 = C16.19D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).6C2^2 | 128,948 |
(C2×Q16).7C22 = C16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).7C2^2 | 128,949 |
(C2×Q16).8C22 = C16.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).8C2^2 | 128,951 |
(C2×Q16).9C22 = C16⋊2D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).9C2^2 | 128,952 |
(C2×Q16).10C22 = C23.50D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).10C2^2 | 128,967 |
(C2×Q16).11C22 = C23.51D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).11C2^2 | 128,968 |
(C2×Q16).12C22 = C23.20D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).12C2^2 | 128,969 |
(C2×Q16).13C22 = C4.SD32 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).13C2^2 | 128,973 |
(C2×Q16).14C22 = C8.22SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).14C2^2 | 128,974 |
(C2×Q16).15C22 = C8.12SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).15C2^2 | 128,975 |
(C2×Q16).16C22 = C8.14SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).16C2^2 | 128,977 |
(C2×Q16).17C22 = C4⋊Q32 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).17C2^2 | 128,979 |
(C2×Q16).18C22 = C16⋊5D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).18C2^2 | 128,980 |
(C2×Q16).19C22 = C8.21D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).19C2^2 | 128,981 |
(C2×Q16).20C22 = C16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).20C2^2 | 128,982 |
(C2×Q16).21C22 = C8.7D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).21C2^2 | 128,983 |
(C2×Q16).22C22 = C4.162+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).22C2^2 | 128,1933 |
(C2×Q16).23C22 = C4.172+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).23C2^2 | 128,1934 |
(C2×Q16).24C22 = C4.182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).24C2^2 | 128,1935 |
(C2×Q16).25C22 = C42.267D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).25C2^2 | 128,1941 |
(C2×Q16).26C22 = C42.268D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).26C2^2 | 128,1942 |
(C2×Q16).27C22 = C42.270D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).27C2^2 | 128,1944 |
(C2×Q16).28C22 = C42.411C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).28C2^2 | 128,1957 |
(C2×Q16).29C22 = C42.296D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).29C2^2 | 128,1980 |
(C2×Q16).30C22 = C42.297D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).30C2^2 | 128,1981 |
(C2×Q16).31C22 = C42.298D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).31C2^2 | 128,1982 |
(C2×Q16).32C22 = C42.29C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).32C2^2 | 128,1994 |
(C2×Q16).33C22 = SD16⋊3D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).33C2^2 | 128,2008 |
(C2×Q16).34C22 = Q16⋊4D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).34C2^2 | 128,2009 |
(C2×Q16).35C22 = D8⋊13D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).35C2^2 | 128,2015 |
(C2×Q16).36C22 = D4×Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).36C2^2 | 128,2018 |
(C2×Q16).37C22 = C42.467C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).37C2^2 | 128,2034 |
(C2×Q16).38C22 = C42.50C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).38C2^2 | 128,2047 |
(C2×Q16).39C22 = C42.527C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).39C2^2 | 128,2125 |
(C2×Q16).40C22 = C42.528C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).40C2^2 | 128,2126 |
(C2×Q16).41C22 = Q8⋊6Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).41C2^2 | 128,2127 |
(C2×Q16).42C22 = C42.533C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).42C2^2 | 128,2135 |
(C2×Q16).43C22 = Q32⋊C4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16).43C2^2 | 128,912 |
(C2×Q16).44C22 = Q16.D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16).44C2^2 | 128,925 |
(C2×Q16).45C22 = D8.12D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | 4- | (C2xQ16).45C2^2 | 128,927 |
(C2×Q16).46C22 = C8.3D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16).46C2^2 | 128,944 |
(C2×Q16).47C22 = C8.5D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4- | (C2xQ16).47C2^2 | 128,946 |
(C2×Q16).48C22 = D4.4D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | 4- | (C2xQ16).48C2^2 | 128,954 |
(C2×Q16).49C22 = D4.5D8 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16).49C2^2 | 128,955 |
(C2×Q16).50C22 = C23.10SD16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 8- | (C2xQ16).50C2^2 | 128,971 |
(C2×Q16).51C22 = C42.212D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).51C2^2 | 128,1769 |
(C2×Q16).52C22 = C42.445D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).52C2^2 | 128,1771 |
(C2×Q16).53C22 = C42.17C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).53C2^2 | 128,1776 |
(C2×Q16).54C22 = C42.19C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).54C2^2 | 128,1778 |
(C2×Q16).55C22 = M4(2)⋊17D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).55C2^2 | 128,1795 |
(C2×Q16).56C22 = C42.229D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).56C2^2 | 128,1843 |
(C2×Q16).57C22 = C42.231D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).57C2^2 | 128,1845 |
(C2×Q16).58C22 = C42.234D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).58C2^2 | 128,1848 |
(C2×Q16).59C22 = C42.235D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).59C2^2 | 128,1849 |
(C2×Q16).60C22 = C42.354C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).60C2^2 | 128,1852 |
(C2×Q16).61C22 = C42.355C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).61C2^2 | 128,1853 |
(C2×Q16).62C22 = C42.359C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).62C2^2 | 128,1857 |
(C2×Q16).63C22 = M4(2)⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).63C2^2 | 128,1884 |
(C2×Q16).64C22 = C42.385C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).64C2^2 | 128,1905 |
(C2×Q16).65C22 = C42.389C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).65C2^2 | 128,1909 |
(C2×Q16).66C22 = C42.258D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).66C2^2 | 128,1913 |
(C2×Q16).67C22 = C42.260D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).67C2^2 | 128,1915 |
(C2×Q16).68C22 = C42.262D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).68C2^2 | 128,1917 |
(C2×Q16).69C22 = C4.192+ 1+4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).69C2^2 | 128,1936 |
(C2×Q16).70C22 = C42.274D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).70C2^2 | 128,1948 |
(C2×Q16).71C22 = C42.276D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).71C2^2 | 128,1950 |
(C2×Q16).72C22 = C42.277D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).72C2^2 | 128,1951 |
(C2×Q16).73C22 = C42.409C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).73C2^2 | 128,1955 |
(C2×Q16).74C22 = C42.300D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).74C2^2 | 128,1984 |
(C2×Q16).75C22 = C42.303D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).75C2^2 | 128,1987 |
(C2×Q16).76C22 = C42.304D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).76C2^2 | 128,1988 |
(C2×Q16).77C22 = C42.25C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).77C2^2 | 128,1990 |
(C2×Q16).78C22 = C42.28C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).78C2^2 | 128,1993 |
(C2×Q16).79C22 = C42.30C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).79C2^2 | 128,1995 |
(C2×Q16).80C22 = SD16⋊8D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).80C2^2 | 128,2001 |
(C2×Q16).81C22 = Q16⋊9D4 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).81C2^2 | 128,2002 |
(C2×Q16).82C22 = D8○Q16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 32 | 4- | (C2xQ16).82C2^2 | 128,2025 |
(C2×Q16).83C22 = C42.47C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).83C2^2 | 128,2044 |
(C2×Q16).84C22 = C42.48C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).84C2^2 | 128,2045 |
(C2×Q16).85C22 = C42.51C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).85C2^2 | 128,2048 |
(C2×Q16).86C22 = C42.52C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).86C2^2 | 128,2049 |
(C2×Q16).87C22 = C42.480C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).87C2^2 | 128,2063 |
(C2×Q16).88C22 = C42.58C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).88C2^2 | 128,2076 |
(C2×Q16).89C22 = C42.63C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).89C2^2 | 128,2081 |
(C2×Q16).90C22 = C42.510C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).90C2^2 | 128,2101 |
(C2×Q16).91C22 = C42.512C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).91C2^2 | 128,2103 |
(C2×Q16).92C22 = C42.515C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 128 | | (C2xQ16).92C2^2 | 128,2106 |
(C2×Q16).93C22 = C42.518C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).93C2^2 | 128,2109 |
(C2×Q16).94C22 = C42.73C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).94C2^2 | 128,2130 |
(C2×Q16).95C22 = C42.75C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).95C2^2 | 128,2132 |
(C2×Q16).96C22 = C42.531C23 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | | (C2xQ16).96C2^2 | 128,2133 |
(C2×Q16).97C22 = Q8○D16 | φ: C22/C1 → C22 ⊆ Out C2×Q16 | 64 | 4- | (C2xQ16).97C2^2 | 128,2149 |
(C2×Q16).98C22 = C2×C2.Q32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).98C2^2 | 128,869 |
(C2×Q16).99C22 = C23.24D8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).99C2^2 | 128,870 |
(C2×Q16).100C22 = C23.39D8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).100C2^2 | 128,871 |
(C2×Q16).101C22 = C23.41D8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).101C2^2 | 128,873 |
(C2×Q16).102C22 = C4×SD32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).102C2^2 | 128,905 |
(C2×Q16).103C22 = C4×Q32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).103C2^2 | 128,906 |
(C2×Q16).104C22 = SD32⋊3C4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).104C2^2 | 128,907 |
(C2×Q16).105C22 = Q32⋊4C4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).105C2^2 | 128,908 |
(C2×Q16).106C22 = Q16⋊7D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).106C2^2 | 128,917 |
(C2×Q16).107C22 = D8⋊8D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).107C2^2 | 128,918 |
(C2×Q16).108C22 = D8.10D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).108C2^2 | 128,921 |
(C2×Q16).109C22 = Q16⋊2D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).109C2^2 | 128,939 |
(C2×Q16).110C22 = Q16⋊Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).110C2^2 | 128,957 |
(C2×Q16).111C22 = C4.Q32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).111C2^2 | 128,959 |
(C2×Q16).112C22 = Q16.Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).112C2^2 | 128,961 |
(C2×Q16).113C22 = Q8.(C2×D4) | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).113C2^2 | 128,1743 |
(C2×Q16).114C22 = (C2×Q8)⋊17D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).114C2^2 | 128,1745 |
(C2×Q16).115C22 = C2×C4⋊2Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).115C2^2 | 128,1765 |
(C2×Q16).116C22 = C42.443D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).116C2^2 | 128,1767 |
(C2×Q16).117C22 = C8.D4⋊C2 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).117C2^2 | 128,1791 |
(C2×Q16).118C22 = (C2×C8)⋊14D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).118C2^2 | 128,1793 |
(C2×Q16).119C22 = C42.384D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).119C2^2 | 128,1834 |
(C2×Q16).120C22 = C42.224D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).120C2^2 | 128,1836 |
(C2×Q16).121C22 = C42.451D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).121C2^2 | 128,1839 |
(C2×Q16).122C22 = C42.226D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).122C2^2 | 128,1840 |
(C2×Q16).123C22 = C42.358C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).123C2^2 | 128,1856 |
(C2×Q16).124C22 = C42.361C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).124C2^2 | 128,1859 |
(C2×Q16).125C22 = C2×C4⋊Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).125C2^2 | 128,1877 |
(C2×Q16).126C22 = C42.360D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).126C2^2 | 128,1879 |
(C2×Q16).127C22 = M4(2).20D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).127C2^2 | 128,1888 |
(C2×Q16).128C22 = C42.308D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).128C2^2 | 128,1900 |
(C2×Q16).129C22 = C42.367D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).129C2^2 | 128,1902 |
(C2×Q16).130C22 = C42.387C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).130C2^2 | 128,1907 |
(C2×Q16).131C22 = SD16⋊11D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).131C2^2 | 128,2016 |
(C2×Q16).132C22 = D4⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).132C2^2 | 128,2031 |
(C2×Q16).133C22 = C42.465C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).133C2^2 | 128,2032 |
(C2×Q16).134C22 = C42.469C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).134C2^2 | 128,2036 |
(C2×Q16).135C22 = C42.476C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).135C2^2 | 128,2059 |
(C2×Q16).136C22 = C42.477C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).136C2^2 | 128,2060 |
(C2×Q16).137C22 = C42.482C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).137C2^2 | 128,2065 |
(C2×Q16).138C22 = C42.485C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).138C2^2 | 128,2068 |
(C2×Q16).139C22 = D4⋊6Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).139C2^2 | 128,2070 |
(C2×Q16).140C22 = C42.491C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).140C2^2 | 128,2074 |
(C2×Q16).141C22 = Q8⋊5Q16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).141C2^2 | 128,2095 |
(C2×Q16).142C22 = C42.505C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).142C2^2 | 128,2096 |
(C2×Q16).143C22 = C42.506C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).143C2^2 | 128,2097 |
(C2×Q16).144C22 = C42.516C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).144C2^2 | 128,2107 |
(C2×Q16).145C22 = C42.530C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).145C2^2 | 128,2128 |
(C2×Q16).146C22 = C22×Q32 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).146C2^2 | 128,2142 |
(C2×Q16).147C22 = C2×C4○D16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).147C2^2 | 128,2143 |
(C2×Q16).148C22 = C2×C8.17D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).148C2^2 | 128,879 |
(C2×Q16).149C22 = C23.21SD16 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 32 | 4 | (C2xQ16).149C2^2 | 128,880 |
(C2×Q16).150C22 = C2×Q16⋊C4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).150C2^2 | 128,1673 |
(C2×Q16).151C22 = C42.383D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).151C2^2 | 128,1675 |
(C2×Q16).152C22 = C4×C8.C22 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).152C2^2 | 128,1677 |
(C2×Q16).153C22 = C42.276C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).153C2^2 | 128,1679 |
(C2×Q16).154C22 = C42.279C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).154C2^2 | 128,1682 |
(C2×Q16).155C22 = C42.281C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).155C2^2 | 128,1684 |
(C2×Q16).156C22 = (C2×C8)⋊13D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).156C2^2 | 128,1792 |
(C2×Q16).157C22 = C42.247D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).157C2^2 | 128,1882 |
(C2×Q16).158C22 = C42.256D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).158C2^2 | 128,1904 |
(C2×Q16).159C22 = C42.390C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).159C2^2 | 128,1910 |
(C2×Q16).160C22 = Q16⋊10D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).160C2^2 | 128,2003 |
(C2×Q16).161C22 = Q16⋊5D4 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).161C2^2 | 128,2010 |
(C2×Q16).162C22 = C42.493C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).162C2^2 | 128,2084 |
(C2×Q16).163C22 = C42.497C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).163C2^2 | 128,2088 |
(C2×Q16).164C22 = Q16⋊4Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).164C2^2 | 128,2119 |
(C2×Q16).165C22 = Q16⋊5Q8 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 128 | | (C2xQ16).165C2^2 | 128,2122 |
(C2×Q16).166C22 = C42.532C23 | φ: C22/C2 → C2 ⊆ Out C2×Q16 | 64 | | (C2xQ16).166C2^2 | 128,2134 |
(C2×Q16).167C22 = C2×C4×Q16 | φ: trivial image | 128 | | (C2xQ16).167C2^2 | 128,1670 |
(C2×Q16).168C22 = C4×C4○D8 | φ: trivial image | 64 | | (C2xQ16).168C2^2 | 128,1671 |
(C2×Q16).169C22 = C42.280C23 | φ: trivial image | 64 | | (C2xQ16).169C2^2 | 128,1683 |
(C2×Q16).170C22 = Q16⋊12D4 | φ: trivial image | 64 | | (C2xQ16).170C2^2 | 128,2017 |
(C2×Q16).171C22 = Q16⋊13D4 | φ: trivial image | 64 | | (C2xQ16).171C2^2 | 128,2019 |
(C2×Q16).172C22 = Q8×Q16 | φ: trivial image | 128 | | (C2xQ16).172C2^2 | 128,2114 |
(C2×Q16).173C22 = Q16⋊6Q8 | φ: trivial image | 128 | | (C2xQ16).173C2^2 | 128,2115 |