Extensions 1→N→G→Q→1 with N=C2xQ16 and Q=C22

Direct product G=NxQ with N=C2xQ16 and Q=C22
dρLabelID
C23xQ16128C2^3xQ16128,2308

Semidirect products G=N:Q with N=C2xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xQ16):1C22 = D8.9D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):1C2^2128,919
(C2xQ16):2C22 = C23:3Q16φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):2C2^2128,1921
(C2xQ16):3C22 = C24.123D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):3C2^2128,1922
(C2xQ16):4C22 = C24.124D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):4C2^2128,1923
(C2xQ16):5C22 = C42.269D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):5C2^2128,1943
(C2xQ16):6C22 = C42.410C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):6C2^2128,1956
(C2xQ16):7C22 = D8:5D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):7C2^2128,2005
(C2xQ16):8C22 = C42.461C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):8C2^2128,2028
(C2xQ16):9C22 = C42.49C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):9C2^2128,2046
(C2xQ16):10C22 = D8.D4φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16):10C2^2128,923
(C2xQ16):11C22 = D8.3D4φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16):11C2^2128,926
(C2xQ16):12C22 = C24.178D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):12C2^2128,1736
(C2xQ16):13C22 = C24.104D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):13C2^2128,1737
(C2xQ16):14C22 = C24.106D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):14C2^2128,1739
(C2xQ16):15C22 = D4.(C2xD4)φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):15C2^2128,1741
(C2xQ16):16C22 = C42.446D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):16C2^2128,1772
(C2xQ16):17C22 = C42.16C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):17C2^2128,1775
(C2xQ16):18C22 = M4(2):15D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):18C2^2128,1788
(C2xQ16):19C22 = M4(2).38D4φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16):19C2^2128,1801
(C2xQ16):20C22 = M4(2):9D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):20C2^2128,1885
(C2xQ16):21C22 = M4(2):10D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):21C2^2128,1886
(C2xQ16):22C22 = C24.128D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):22C2^2128,1927
(C2xQ16):23C22 = C24.129D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):23C2^2128,1928
(C2xQ16):24C22 = C24.130D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):24C2^2128,1929
(C2xQ16):25C22 = C42.273D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):25C2^2128,1947
(C2xQ16):26C22 = C42.408C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):26C2^2128,1954
(C2xQ16):27C22 = SD16:6D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):27C2^2128,1998
(C2xQ16):28C22 = D8:10D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):28C2^2128,1999
(C2xQ16):29C22 = SD16:2D4φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):29C2^2128,2007
(C2xQ16):30C22 = D8.13D4φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16):30C2^2128,2021
(C2xQ16):31C22 = D8oSD16φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16):31C2^2128,2022
(C2xQ16):32C22 = C42.46C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):32C2^2128,2043
(C2xQ16):33C22 = C42.472C23φ: C22/C1C22 ⊆ Out C2xQ1632(C2xQ16):33C2^2128,2055
(C2xQ16):34C22 = D4oSD32φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16):34C2^2128,2148
(C2xQ16):35C22 = C4.C25φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16):35C2^2128,2318
(C2xQ16):36C22 = C2xC22:Q16φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):36C2^2128,1731
(C2xQ16):37C22 = C2xD4.7D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):37C2^2128,1733
(C2xQ16):38C22 = C24.103D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):38C2^2128,1734
(C2xQ16):39C22 = (C2xD4):21D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):39C2^2128,1744
(C2xQ16):40C22 = C2xQ8.D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):40C2^2128,1766
(C2xQ16):41C22 = C42.18C23φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):41C2^2128,1777
(C2xQ16):42C22 = C2xC8.18D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):42C2^2128,1781
(C2xQ16):43C22 = C24.144D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):43C2^2128,1782
(C2xQ16):44C22 = C2xC8.12D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):44C2^2128,1878
(C2xQ16):45C22 = M4(2):11D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):45C2^2128,1887
(C2xQ16):46C22 = SD16:7D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):46C2^2128,2000
(C2xQ16):47C22 = D8:12D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):47C2^2128,2012
(C2xQ16):48C22 = SD16:10D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):48C2^2128,2014
(C2xQ16):49C22 = C22xSD32φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):49C2^2128,2141
(C2xQ16):50C22 = C2xC16:C22φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):50C2^2128,2144
(C2xQ16):51C22 = C2xC8.D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):51C2^2128,1785
(C2xQ16):52C22 = C24.110D4φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):52C2^2128,1786
(C2xQ16):53C22 = C2xD4.5D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):53C2^2128,1798
(C2xQ16):54C22 = M4(2).10C23φ: C22/C2C2 ⊆ Out C2xQ16324(C2xQ16):54C2^2128,1799
(C2xQ16):55C22 = C2xC8.2D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):55C2^2128,1881
(C2xQ16):56C22 = C2xQ32:C2φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):56C2^2128,2145
(C2xQ16):57C22 = D16:C22φ: C22/C2C2 ⊆ Out C2xQ16324(C2xQ16):57C2^2128,2146
(C2xQ16):58C22 = C22xC8.C22φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):58C2^2128,2311
(C2xQ16):59C22 = C2xD8:C22φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):59C2^2128,2312
(C2xQ16):60C22 = C2xD4oSD16φ: C22/C2C2 ⊆ Out C2xQ1632(C2xQ16):60C2^2128,2314
(C2xQ16):61C22 = C2xQ8oD8φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16):61C2^2128,2315
(C2xQ16):62C22 = C8.C24φ: C22/C2C2 ⊆ Out C2xQ16324(C2xQ16):62C2^2128,2316
(C2xQ16):63C22 = C22xC4oD8φ: trivial image64(C2xQ16):63C2^2128,2309
(C2xQ16):64C22 = C2xD4oD8φ: trivial image32(C2xQ16):64C2^2128,2313

Non-split extensions G=N.Q with N=C2xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xQ16).1C22 = Q16.8D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).1C2^2128,920
(C2xQ16).2C22 = D8.4D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).2C2^2128,940
(C2xQ16).3C22 = Q16.4D4φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).3C2^2128,941
(C2xQ16).4C22 = D8.5D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).4C2^2128,942
(C2xQ16).5C22 = Q16.5D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).5C2^2128,943
(C2xQ16).6C22 = C16.19D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).6C2^2128,948
(C2xQ16).7C22 = C16:8D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).7C2^2128,949
(C2xQ16).8C22 = C16.D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).8C2^2128,951
(C2xQ16).9C22 = C16:2D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).9C2^2128,952
(C2xQ16).10C22 = C23.50D8φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).10C2^2128,967
(C2xQ16).11C22 = C23.51D8φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).11C2^2128,968
(C2xQ16).12C22 = C23.20D8φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).12C2^2128,969
(C2xQ16).13C22 = C4.SD32φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).13C2^2128,973
(C2xQ16).14C22 = C8.22SD16φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).14C2^2128,974
(C2xQ16).15C22 = C8.12SD16φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).15C2^2128,975
(C2xQ16).16C22 = C8.14SD16φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).16C2^2128,977
(C2xQ16).17C22 = C4:Q32φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).17C2^2128,979
(C2xQ16).18C22 = C16:5D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).18C2^2128,980
(C2xQ16).19C22 = C8.21D8φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).19C2^2128,981
(C2xQ16).20C22 = C16:3D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).20C2^2128,982
(C2xQ16).21C22 = C8.7D8φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).21C2^2128,983
(C2xQ16).22C22 = C4.162+ 1+4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).22C2^2128,1933
(C2xQ16).23C22 = C4.172+ 1+4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).23C2^2128,1934
(C2xQ16).24C22 = C4.182+ 1+4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).24C2^2128,1935
(C2xQ16).25C22 = C42.267D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).25C2^2128,1941
(C2xQ16).26C22 = C42.268D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).26C2^2128,1942
(C2xQ16).27C22 = C42.270D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).27C2^2128,1944
(C2xQ16).28C22 = C42.411C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).28C2^2128,1957
(C2xQ16).29C22 = C42.296D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).29C2^2128,1980
(C2xQ16).30C22 = C42.297D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).30C2^2128,1981
(C2xQ16).31C22 = C42.298D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).31C2^2128,1982
(C2xQ16).32C22 = C42.29C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).32C2^2128,1994
(C2xQ16).33C22 = SD16:3D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).33C2^2128,2008
(C2xQ16).34C22 = Q16:4D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).34C2^2128,2009
(C2xQ16).35C22 = D8:13D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).35C2^2128,2015
(C2xQ16).36C22 = D4xQ16φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).36C2^2128,2018
(C2xQ16).37C22 = C42.467C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).37C2^2128,2034
(C2xQ16).38C22 = C42.50C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).38C2^2128,2047
(C2xQ16).39C22 = C42.527C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).39C2^2128,2125
(C2xQ16).40C22 = C42.528C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).40C2^2128,2126
(C2xQ16).41C22 = Q8:6Q16φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).41C2^2128,2127
(C2xQ16).42C22 = C42.533C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).42C2^2128,2135
(C2xQ16).43C22 = Q32:C4φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16).43C2^2128,912
(C2xQ16).44C22 = Q16.D4φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16).44C2^2128,925
(C2xQ16).45C22 = D8.12D4φ: C22/C1C22 ⊆ Out C2xQ16644-(C2xQ16).45C2^2128,927
(C2xQ16).46C22 = C8.3D8φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16).46C2^2128,944
(C2xQ16).47C22 = C8.5D8φ: C22/C1C22 ⊆ Out C2xQ16324-(C2xQ16).47C2^2128,946
(C2xQ16).48C22 = D4.4D8φ: C22/C1C22 ⊆ Out C2xQ16644-(C2xQ16).48C2^2128,954
(C2xQ16).49C22 = D4.5D8φ: C22/C1C22 ⊆ Out C2xQ16324(C2xQ16).49C2^2128,955
(C2xQ16).50C22 = C23.10SD16φ: C22/C1C22 ⊆ Out C2xQ16328-(C2xQ16).50C2^2128,971
(C2xQ16).51C22 = C42.212D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).51C2^2128,1769
(C2xQ16).52C22 = C42.445D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).52C2^2128,1771
(C2xQ16).53C22 = C42.17C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).53C2^2128,1776
(C2xQ16).54C22 = C42.19C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).54C2^2128,1778
(C2xQ16).55C22 = M4(2):17D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).55C2^2128,1795
(C2xQ16).56C22 = C42.229D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).56C2^2128,1843
(C2xQ16).57C22 = C42.231D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).57C2^2128,1845
(C2xQ16).58C22 = C42.234D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).58C2^2128,1848
(C2xQ16).59C22 = C42.235D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).59C2^2128,1849
(C2xQ16).60C22 = C42.354C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).60C2^2128,1852
(C2xQ16).61C22 = C42.355C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).61C2^2128,1853
(C2xQ16).62C22 = C42.359C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).62C2^2128,1857
(C2xQ16).63C22 = M4(2):8D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).63C2^2128,1884
(C2xQ16).64C22 = C42.385C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).64C2^2128,1905
(C2xQ16).65C22 = C42.389C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).65C2^2128,1909
(C2xQ16).66C22 = C42.258D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).66C2^2128,1913
(C2xQ16).67C22 = C42.260D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).67C2^2128,1915
(C2xQ16).68C22 = C42.262D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).68C2^2128,1917
(C2xQ16).69C22 = C4.192+ 1+4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).69C2^2128,1936
(C2xQ16).70C22 = C42.274D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).70C2^2128,1948
(C2xQ16).71C22 = C42.276D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).71C2^2128,1950
(C2xQ16).72C22 = C42.277D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).72C2^2128,1951
(C2xQ16).73C22 = C42.409C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).73C2^2128,1955
(C2xQ16).74C22 = C42.300D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).74C2^2128,1984
(C2xQ16).75C22 = C42.303D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).75C2^2128,1987
(C2xQ16).76C22 = C42.304D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).76C2^2128,1988
(C2xQ16).77C22 = C42.25C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).77C2^2128,1990
(C2xQ16).78C22 = C42.28C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).78C2^2128,1993
(C2xQ16).79C22 = C42.30C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).79C2^2128,1995
(C2xQ16).80C22 = SD16:8D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).80C2^2128,2001
(C2xQ16).81C22 = Q16:9D4φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).81C2^2128,2002
(C2xQ16).82C22 = D8oQ16φ: C22/C1C22 ⊆ Out C2xQ16324-(C2xQ16).82C2^2128,2025
(C2xQ16).83C22 = C42.47C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).83C2^2128,2044
(C2xQ16).84C22 = C42.48C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).84C2^2128,2045
(C2xQ16).85C22 = C42.51C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).85C2^2128,2048
(C2xQ16).86C22 = C42.52C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).86C2^2128,2049
(C2xQ16).87C22 = C42.480C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).87C2^2128,2063
(C2xQ16).88C22 = C42.58C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).88C2^2128,2076
(C2xQ16).89C22 = C42.63C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).89C2^2128,2081
(C2xQ16).90C22 = C42.510C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).90C2^2128,2101
(C2xQ16).91C22 = C42.512C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).91C2^2128,2103
(C2xQ16).92C22 = C42.515C23φ: C22/C1C22 ⊆ Out C2xQ16128(C2xQ16).92C2^2128,2106
(C2xQ16).93C22 = C42.518C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).93C2^2128,2109
(C2xQ16).94C22 = C42.73C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).94C2^2128,2130
(C2xQ16).95C22 = C42.75C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).95C2^2128,2132
(C2xQ16).96C22 = C42.531C23φ: C22/C1C22 ⊆ Out C2xQ1664(C2xQ16).96C2^2128,2133
(C2xQ16).97C22 = Q8oD16φ: C22/C1C22 ⊆ Out C2xQ16644-(C2xQ16).97C2^2128,2149
(C2xQ16).98C22 = C2xC2.Q32φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).98C2^2128,869
(C2xQ16).99C22 = C23.24D8φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).99C2^2128,870
(C2xQ16).100C22 = C23.39D8φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).100C2^2128,871
(C2xQ16).101C22 = C23.41D8φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).101C2^2128,873
(C2xQ16).102C22 = C4xSD32φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).102C2^2128,905
(C2xQ16).103C22 = C4xQ32φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).103C2^2128,906
(C2xQ16).104C22 = SD32:3C4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).104C2^2128,907
(C2xQ16).105C22 = Q32:4C4φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).105C2^2128,908
(C2xQ16).106C22 = Q16:7D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).106C2^2128,917
(C2xQ16).107C22 = D8:8D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).107C2^2128,918
(C2xQ16).108C22 = D8.10D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).108C2^2128,921
(C2xQ16).109C22 = Q16:2D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).109C2^2128,939
(C2xQ16).110C22 = Q16:Q8φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).110C2^2128,957
(C2xQ16).111C22 = C4.Q32φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).111C2^2128,959
(C2xQ16).112C22 = Q16.Q8φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).112C2^2128,961
(C2xQ16).113C22 = Q8.(C2xD4)φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).113C2^2128,1743
(C2xQ16).114C22 = (C2xQ8):17D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).114C2^2128,1745
(C2xQ16).115C22 = C2xC4:2Q16φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).115C2^2128,1765
(C2xQ16).116C22 = C42.443D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).116C2^2128,1767
(C2xQ16).117C22 = C8.D4:C2φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).117C2^2128,1791
(C2xQ16).118C22 = (C2xC8):14D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).118C2^2128,1793
(C2xQ16).119C22 = C42.384D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).119C2^2128,1834
(C2xQ16).120C22 = C42.224D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).120C2^2128,1836
(C2xQ16).121C22 = C42.451D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).121C2^2128,1839
(C2xQ16).122C22 = C42.226D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).122C2^2128,1840
(C2xQ16).123C22 = C42.358C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).123C2^2128,1856
(C2xQ16).124C22 = C42.361C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).124C2^2128,1859
(C2xQ16).125C22 = C2xC4:Q16φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).125C2^2128,1877
(C2xQ16).126C22 = C42.360D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).126C2^2128,1879
(C2xQ16).127C22 = M4(2).20D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).127C2^2128,1888
(C2xQ16).128C22 = C42.308D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).128C2^2128,1900
(C2xQ16).129C22 = C42.367D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).129C2^2128,1902
(C2xQ16).130C22 = C42.387C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).130C2^2128,1907
(C2xQ16).131C22 = SD16:11D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).131C2^2128,2016
(C2xQ16).132C22 = D4:5Q16φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).132C2^2128,2031
(C2xQ16).133C22 = C42.465C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).133C2^2128,2032
(C2xQ16).134C22 = C42.469C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).134C2^2128,2036
(C2xQ16).135C22 = C42.476C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).135C2^2128,2059
(C2xQ16).136C22 = C42.477C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).136C2^2128,2060
(C2xQ16).137C22 = C42.482C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).137C2^2128,2065
(C2xQ16).138C22 = C42.485C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).138C2^2128,2068
(C2xQ16).139C22 = D4:6Q16φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).139C2^2128,2070
(C2xQ16).140C22 = C42.491C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).140C2^2128,2074
(C2xQ16).141C22 = Q8:5Q16φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).141C2^2128,2095
(C2xQ16).142C22 = C42.505C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).142C2^2128,2096
(C2xQ16).143C22 = C42.506C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).143C2^2128,2097
(C2xQ16).144C22 = C42.516C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).144C2^2128,2107
(C2xQ16).145C22 = C42.530C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).145C2^2128,2128
(C2xQ16).146C22 = C22xQ32φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).146C2^2128,2142
(C2xQ16).147C22 = C2xC4oD16φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).147C2^2128,2143
(C2xQ16).148C22 = C2xC8.17D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).148C2^2128,879
(C2xQ16).149C22 = C23.21SD16φ: C22/C2C2 ⊆ Out C2xQ16324(C2xQ16).149C2^2128,880
(C2xQ16).150C22 = C2xQ16:C4φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).150C2^2128,1673
(C2xQ16).151C22 = C42.383D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).151C2^2128,1675
(C2xQ16).152C22 = C4xC8.C22φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).152C2^2128,1677
(C2xQ16).153C22 = C42.276C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).153C2^2128,1679
(C2xQ16).154C22 = C42.279C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).154C2^2128,1682
(C2xQ16).155C22 = C42.281C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).155C2^2128,1684
(C2xQ16).156C22 = (C2xC8):13D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).156C2^2128,1792
(C2xQ16).157C22 = C42.247D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).157C2^2128,1882
(C2xQ16).158C22 = C42.256D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).158C2^2128,1904
(C2xQ16).159C22 = C42.390C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).159C2^2128,1910
(C2xQ16).160C22 = Q16:10D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).160C2^2128,2003
(C2xQ16).161C22 = Q16:5D4φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).161C2^2128,2010
(C2xQ16).162C22 = C42.493C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).162C2^2128,2084
(C2xQ16).163C22 = C42.497C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).163C2^2128,2088
(C2xQ16).164C22 = Q16:4Q8φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).164C2^2128,2119
(C2xQ16).165C22 = Q16:5Q8φ: C22/C2C2 ⊆ Out C2xQ16128(C2xQ16).165C2^2128,2122
(C2xQ16).166C22 = C42.532C23φ: C22/C2C2 ⊆ Out C2xQ1664(C2xQ16).166C2^2128,2134
(C2xQ16).167C22 = C2xC4xQ16φ: trivial image128(C2xQ16).167C2^2128,1670
(C2xQ16).168C22 = C4xC4oD8φ: trivial image64(C2xQ16).168C2^2128,1671
(C2xQ16).169C22 = C42.280C23φ: trivial image64(C2xQ16).169C2^2128,1683
(C2xQ16).170C22 = Q16:12D4φ: trivial image64(C2xQ16).170C2^2128,2017
(C2xQ16).171C22 = Q16:13D4φ: trivial image64(C2xQ16).171C2^2128,2019
(C2xQ16).172C22 = Q8xQ16φ: trivial image128(C2xQ16).172C2^2128,2114
(C2xQ16).173C22 = Q16:6Q8φ: trivial image128(C2xQ16).173C2^2128,2115

׿
x
:
Z
F
o
wr
Q
<